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SUMMARY 

In this paper the vortex shedding around a heatedkooled circular cylinder is numerically simulated by solving the 
time-dependent Navier-Stokes and energy equations. A finite element method that is referred to as the three-step 
Taylor-Galerkin method is used to compute these equations. The attention of this study is directed to the 
investigation of the effect of buoyancy on the vortex street behind the cylinder at constant Reynolds number. The 
present paper shows the suppression or generation of the von K5umh vortex street behind the cylinder when the 
cylinder surface is heated or cooled respectively. The relationship between the temperature-induced buoyancy 
force and the vortex shedding is also discussed through several numerical examples. 
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INTRODUCTION 

The vortex shedding around a cylinder and the von K h h  vortex street behind a cylinder have 
received much attention by many researchers in both experimental and numerical fluid dynamics. The 
vortex shedding around a circular cylinder is a well-known benchmark problem for the numerical 
simulation of unsteady, incompressible viscous fluid flow. Successful simulations have been reported 
by numerous authors using a wide range of numerical methods. However, the problem of vortex 
shedding for mixed natural and forced convection has not been investigated sufficiently. In the mixed 
convection regime the flow situation is physically complex or complicated owing to the temperature- 
induced buoyancy forces added to the viscous phenomena. In this area Noto and Matsumoto’ first 
numerically investigated the degeneration of the von K h h  vortex street by a finite difference 
scheme in the case where the cylinder surface is heated. Jain and Loha? and Noto and Matsumoto3 
have also studied the increase in the vortex-shedding frequency with increasing cylinder temperature. 
Chang and Sa4 have reported a detailed study on the vortex mechanisms in the near wake of a heatedl 
cooled circular cylinder by a finite difference scheme. According to their results, cooling of the 
cylinder surface promotes the generation of the von Karmh vortex street even when the Reynolds 
number is low; steady twin vortices are usually observed. On the other hand, when the cylinder surface 
is heated, the suppression of the von K b h  vortex street occurs at relatively high Reynolds numbers. 
The above investigations, however, were not aimed at studying the flow behaviour around a critical 
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value of the Grashof (or Richardson) number in detail, where the flow suddenly changes from a 
periodic flow into a steady flow and vice versa. 

This paper presents a finite element analysis of the vortex shedding around a heatedcooled circular 
cylinder, particularly the numerical analysis of the transient flow behaviour around the critical value of 
the Grashof (or Richardson) number in order to understand the relationship between the buoyancy 
effect and the vortex shedding in the mixed convection regime. The finite element scheme used in this 
paper is the three-step Taylor- Galerkidvelocity correction method which has been proposed by us for 
the numerical simulation of convection-dominated flow problems. We also wish to show the 
applicability of this method to the numerical simulation of the flow problems mentioned above through 
numerical examples. 

GOVERNNG EQUATIONS AND NUMERICAL METHODS 

Assuming that the fluid under consideration is an incompressible viscous fluid and the flow is 
unsteady, the governing equations for the vortex s h e d w o u n d  a heatedcooled circular cylinder can 
be the Bousinessq-approximated Navier-Stokes equations, the equation of continuity and the energy 
equation. The non-dimensional forms of these are 

I Gr hi 
at Re Re2 - U j U i , j  +p,i  - - ( ~ i , j  + ~ j . ; ) , ~  - ~ f ; T  = 0 in Q, _ -  

where ui is the velocity vector, p is the pressure, T is the temperature,f; is a unit vector representing the 
gravitational direction, Re is the Reynolds number, Gr is the Grashof number and Pe is the Peclet 
number. Q is the computational domain which is surrounded by the piecewise smooth boundary r. The 
definitions of the non-dimensional parameters are 

(4) 
uca P e = - ,  pgA TD3 

Gr = ____ v= ' tl 
UCaD Re=---, 

V 

where U, is the characteristic velocity, D is the characteristic length representing the diameter of the 
cylinder, v is the kinematic viscosity, p is the coefficient of volumetric thermal expansion, g is the 
gravitational acceleration, tl is the thermal diffisivity and AT ( = T, - T,) is the temperature difference 
between a constant cylinder surface temperature T, and a constant inflow temperature T ,  (Figure 1). 
The general boundary conditions for this system are 

ui = ui on r l ,  ( 5 )  

ti = [-pa, + Re-'(ui,j + u ~ , ~ )  . nj = 2; on rz, (6) 

q = T,ini = ?,ini on r4, (8) 

where 6, is Kronecker's delta function, ni are the direction cosines with respect to a set of axes and the 
superposed hat denotes a fimction given on the boundaries. 



VORTEX SHEDDING AROUND A CIRCULAR CYLINDER 859 

Flow Direction 

Figure 1. Sketch of vortex-shedding problem around circular cylinder in mixed convection 

T(xi, 0) = rCo'(xi), (10) 

where the initial velocity uy'(xi) satisfies the incompressibility condition. 
In order to discretize the governing equations, the three-step Taylor-Galerkin method is successhlly 

used. Let u: and T n  be the known variables of the velocity and temperature fields respectively at time 
t" = t"-' + At (n  = 1, 2, . . .), where At is the time increment. Then the governing equations (1H3) 
can be discretized in time by the forward Euler finite difference scheme 

AAer taking divergence fiom both sides of (1 1) and substituting (12), the pressure Poisson equation 
can be derived as 

(14) 

P"+l =j on r2, (15) 

P.. + 1  - - -u:~ 1 - ujliu:j - U ~ U : ~  + Re-'(uyj + u;~),~ + Gr Re-2(T"fi'),i. J' At 
The boundary conditions for this are 

pl+'ni = f i  on rl .  (16) 

The proper treatment of the boundary conditions for pressure in numerical computations by the 
velocity correction finite element method has been investigated by us previ~usly.~ 
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Once the pressure field has been determined from (14), the velocities u:" can be computed from the 
discrete momentum equation (1 l), which can be treated as a convection-difhsion equation. 

Many solution techniques for the convection-difision type of equation have been proposed in the 
last few decades. The Taylor-Galerkin method is one of the Lax-Wendroff methods and was first 
proposed by Donea and c o - w o r k e r ~ ~ ~ ~  in the finite element method for computing convection- 
dominated flow fields. They concluded that in this context the Taylor-Galerkin method has third-order 
accuracy in space and time and good stability within a certain Courant number range (Cr 5 1.0). The 
use of the Taylor-Galerkin method does not require the specification of a proper parameter value for 
the stability of the computation, which is sometimes required in other methods such as upwinding 
methods, higher-order methods and so on (see e.g. References 8-1 0). However, the Taylor-Galerkin 
method includes the third-derivative term in the discretized momentum equations, which is undesirable 
for linear interpolation functions. We have therefore proposed the three-step Taylor-Galerkin method 
for the numerical simulation of convection-dominated flows with linear interpolation hc t ions  in the 
spatial and temporal discretizations. One of the ideas of the present time-stepping algorithm has come 
from the two-step Lax-Wendroff finite element method proposed by Kawahara." In this method we 
express the time derivative terms of the Taylor series of an objective variable up to the second- 
derivative term by analogy with the manner of the second-order Runge-Kutta scheme. Details of this 
method can be found in References 12 and 13. 

In accordance with the discretization manner of the present method, the discretized momentum, 
energy and pressure Poisson equations (1 l), (13) and (14) can be rewritten in three time integration 

In these equations ~ 1 ~ ~ / ~ ,  Tn+'I3 and T"+2/3 stand for the intermediate velocity and 
temperature variables which complete the third-derivative terms in the Taylor series for the unknown 
velocity and temperature variables u:" and T"+'. 
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I u = v = p = T = O ( a r t = 0 )  
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Figure 2. Analytical domain and boundary conditions 

The use of the standard Galerkin method with linear triangular finite elements can yield the finite 
element formulations of (1 7>-(23). A stability analysis of the present method has been performed by 
usI3 and it has been confirmed that the present method has third-order accuracy and good stability for 
the numerical simulation of the unsteady one-dimensional pure advection equation. 

NUMERICAL RESULTS AND DISCUSSION 

Numerical simulations of the vortex shedding around a heatedkooled circular cylinder have been 
examined in the Grashof number range - 10,000 5 Gr 5 10,000. The constant Reynolds number was 
selected as Re = 100, making the Richardson number 

in the range - 1.0 5 Ri 5 1 .O. The Prandtl number Pr ( = v /a )  is selected to be 0.706, which yields a 
Peclet number Pe (= Pr Re) of 70.6. 

The computational domain and the boundary conditions used in this computation are illustrated in 
Figure 2. The outflow domain was taken to be a distance of 21.5 units downstream from the cylinder 
centre. The inlet temperature T,  is specified as T= 0 and the cylinder surface temperature T, is taken 
to be T= 1.0. The heatedcooled cylinder surface situation was expressed by the direction of the effect 
of buoyancy forces. The heated cylinder surface was represented by a positive Richardson number, 
showing that the buoyancy effect works in the opposite direction to the gravitational force, and the 
cooled cylinder surface was represented by a negative Richardson number. Ri = 0.0 expresses the non- 
heated situation in which the vortex shedding is not influenced by the buoyancy force at all. Figure 3 
shows the finite element mesh used in this simulation. The total numbers of nodes and elements are 
1964 and 3744 respectively. 

Figure 3. Finite element mesh (1964 nodes and 3744 elements) 
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Figure 4. Numerical results of vortex shedding around non-heated cylinder surface at Re = 100 (Ri = 0.0) 

The numerical results for Ri= - 1.0, -0.5, 0.0, 0.5 and 1.0 are shown in Figures 4-8. Upon 
increasing the Richardson number from Ri = 0.0 (Figure 4) to 1 .O, the periodic von K h a n  vortex 
street behind the cylinder disappeared and the flow became steady with twin vortices just behind the 
cylinder (Figures 5 and 6). In contrast, the von Karman vortex street was enhanced upon decreasing the 
Richardson number (Figures 7 and 8). The computed Strouhal number versus the Richardson number 
is illustrated in Figure 9 and indicates that the breakdown of the K h h  vortex street occurs near 
Ri=0.15. This sudden vanishing of vortices has also been observed experimentally by Noto and 
Matsumoto3 and in other numerical computations (see e.g. Reference 4) at the same Richardson 
number. A probable reason for the flow behaviour observed in this computation is that the separation 
points on both sides of the cylinder surface were moved downstream by the buoyancy force as the 

Figure 5. Numerical results of vortex shedding around heated cylinder surface at Re = 100 (Ri = 0.5): (a) streaklines; @) 
streamlines; (c) isotherms 
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Figure 6 .  Numerical results of vortex shedding around heated cylinder surface at Re = 100 (Ri = 1 .O): (a) streaklines; (b) 
streamlines; (c) isotherms 

Richardson number increased (as one can see in Figure 10). The movement of the separation points 
downstream may increase the interactions of the vortices; then the breakdown of the von K h h  
vortex street occurs and the subsequent flow becomes steady. In order to observe the above phenomena 
in detail, computations with Richardson numbers in the range 0.0 i Ri i 0.1 5 have been performed 
using the present method. The streaklines of the numerical results at a dimensionless time of 150 are 
shown in Figure 1 1. According to these results, the breakdown of the von Karmh vortex street occurs 
at Ri = 0.125 (Figure 1 l(b)) and the flow becomes steady state at Ri = 0.1 5 (Figure 1 1 (c)). After Ri 
exceeds 0.12, the stationary twin vortices attach to the cylinder surface and the flow becomes 
symmetrical with respect to the x-axis. 

(4 ( b )  (4 
Figure 7. Numerical results of vortex shedding around cooled cylinder surface at Re= 100 (Ri= - 0.5): (a) streaklines; (b) 

streamlines; (c) isotherms 
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lb) Ic) lai  

Figure 8. Numerical results of vortex shedding around cooled cylinder surface at Re = 100 (Ri = - 1 .O): (a) streaklines; 
(b) streamlines; (c) isotherms 
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Figure 9. Strouhal number versus Richardson nunber 
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Figure 10. Velocity direction on cylinder surface 
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Ri=O.U Ri =O. 05 Ri=O.lO 

Figure 1 l(a). Streaklines behind cylinder at t=  150 (Re= 100) 

Ri=O.Il R i d 1 2  

Figure 1 1 (b). Streaklines behind cylinder at t = 150 (Re = 100) 

Ri412 .5  
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Ri =O. 13 Ri=O. I4 Ri=O.IS 

Figure 1 l(c). Streaklines behind cylinder at f =  150 (Re= 100) 

CONCLUSIONS 

The vortex shedding around a heatedkooled circular cylinder has been simulated by the three-step 
Taylor-Galerkidvelocity correction method. The numerical results provided herein show the 
interesting behaviour of the flow around the cylinder in the mixed convection regime. The following 
remarks on the present simulation can be made. 

1. As the Richardson number increases, the vortex-shedding frequency is increased owing to the 
positive buoyancy force. The von K h h  vortex shedding disappears at approximately 
Ri= 0.15. The flow patterns eventually become steady with symmetric twin vortices. 

2. When the cylinder surface is cooled, the vortex-shedding frequency is decreased. However, the 
asymmetric flow pattern behind the cylinder is enhanced owing to the negative buoyancy force. 
The von K h a n  vortex street behind the cylinder is consequently enlarged. 

The role of the Reynolds number in these phenomena, three-dimensional simulations and 
simulations of the compressible flow in the mixed convection regime will be the subjects of future 
study. 
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